Minggu 2 Physical Layer

Physical Layer

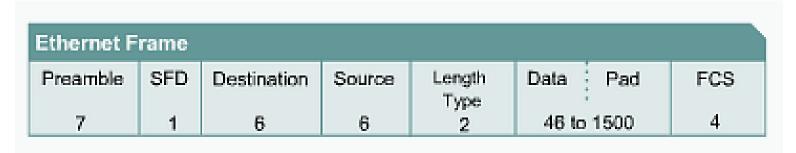
- Merupakan lapisan terbawah dari OSI. Lapisan ini bertanggung jawab terhadap masalah pemindahan data dari hardware satu ke hardware lain.
- Lapisan ini mendefinisikan tentang media penghantar, jenis konektor, serta aturan pensinyalan
- Beberapa Media yang dipakai di jaringan :
 - Tembaga
 - Coaxial
 - Twisted Pair
 - Fiber Optik
 - Wireless

Media Berdasarkan Kecepatan

- 10 Mbps (10 Megabit per detik)
 - Coaxial
 - 10Base2
 - 10Base5
 - Twsited Pair
 - 10BaseT
- 100 Mbps
 - 100BaseTX
 - 100BaseFX
- 1000 Mbps
 - 1000BaseCX
 - 1000BaseSX
 - 1000BaseLX
 - 1000BaseT

Media Berdasarkan Kecepatan

Logical Link Control Sublayer 802.3 Media Access Control


Physical Signaling Layer

Physical Medium

1000BASE-LX (550-5000m) 1000BASE-SX (220-550m) 100BASE-FX (228-412m) 50-Ohm Coax N-Style 100-Ohm UTP RJ-45 00-0hm UTP RJ-45 10BASE-TX (100m) 10GBASE-(various) 50-Ohm Coax BNC 10BASES5 (500m) 100-Ohm UTP RJ 10BASE-T (100m) 10BASE2 (185m) 1000BASE-T MM Fiber SC **MM Fiber SC** MM Fiber SC SS MM or

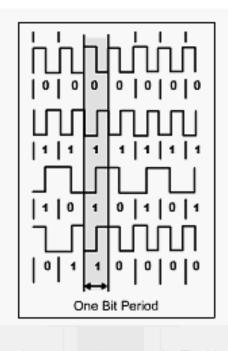
Media Berdasarkan Kecepatan

Semua kecepatan sama dalam frame yang digunakan

 Beda kecepatan mempunyai karakteristik yang berbeda dalam pewaktuan dan beberapa parameter Protocol Structure - Ethernet: IEEE 802.3 Local Area Network protocolsThe basic IEEE 802.3 Ethernet MAC Data Frame for 10/100Mbps Ethernet:

7	1	6	6	2	46-1500bytes	4
Pre	SFD	DA	SA	Length Type	Data unit + pad	FCS

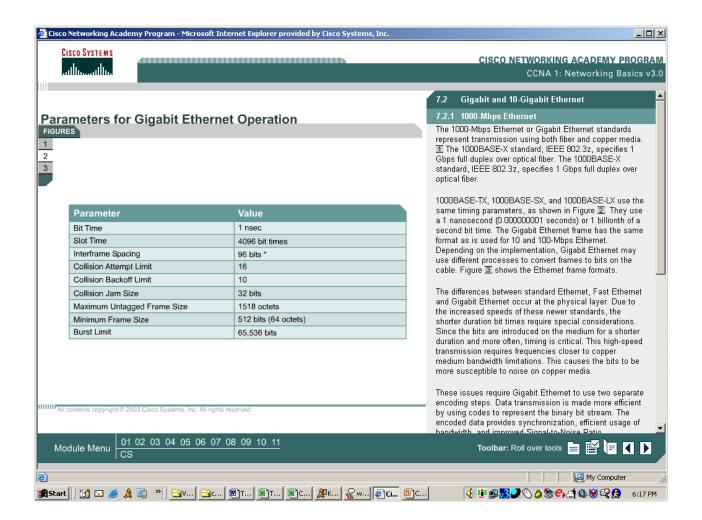
- Preamble (PRE)- 7 bytes. The PRE is an alternating pattern of ones and zeros that tells receiving stations that a frame is coming, and that provides a means to synchronize the frame-reception portions of receiving physical layers with the incoming bit stream.
- Start-of-frame delimiter (SFD)- 1 byte. The SOF is an alternating pattern of ones and zeros, ending with two consecutive 1-bits indicating that the next bit is the left-most bit in the left-most byte of the destination address.
- Destination address (DA)- 6 bytes. The DA field identifies which station(s) should receive the frame..
- Source addresses (SA)- 6 bytes. The SA field identifies the sending station.
- Length/Type- 2 bytes. This field indicates either the number of MAC-client data bytes that are contained in the data field of the frame, or the frame type ID if the frame is assembled using an optional format.
- Data- Is a sequence of n bytes (46=< n =<1500) of any value.
 (The total frame minimum is 64bytes.)
- Frame check sequence (FCS)- 4 bytes. This sequence contains
 a 32-bit cyclic redundancy check (CRC) value, which is created by
 the sending MAC and is recalculated by the receiving MAC to check
 for damaged frames.

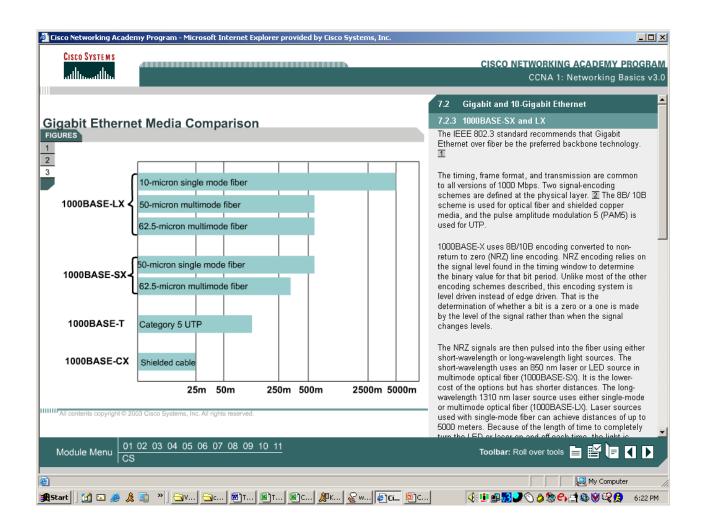

Istilah Yang Digunakan

- > Time Slot : Berulangnya interval waktu yang dibutuhkan 2 device berkomunikasi
- > Bit Time: lamanya untuk mentransmisikan 1 bit
- > Bit Rate: kecepatan transmisi data
- > Propagation Delay: waktu yang dipakai untuk mentransmisikan signal dari 1 tempat ke tempat lain. Tergantung mutu media
- ➤ Interframe Spacing: Minimum jarak 2 frame tidak bertabrakan. Diukur dari bit terakhir field FCS Setelah bit ditransmisikan semua station butuh waktu tunggu minimum untuk mentransfer frame berikutnya. Untuk 10Mbps 9,6 mikrosecond.
- > Spacing Gap: disebut juga Interframe Spacing
- > Latency: waktu antara inisial request s/d actual data ditransmisikan

Parameter	Value
Bit Time	100 nsec
Slot Time	512 bit times
Interframe Spacing	96 bits *
Collision Attempt Limit	16
Collision Backoff Limit	10
Collision Jam Size	32 bits
Maximum Untagged Frame Size	1518 octets
Minimum Frame Size	512 bits (64 octets)

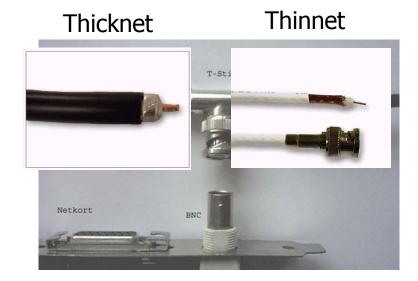
^{*} The value listed is the official interframe spacing.


Dalam sinyaling menggunakan pengkodean mancester encoding

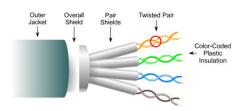


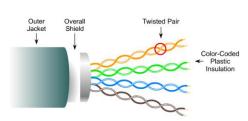
This is a Manchester encoding example. The Y-axis is voltage.

The X-axis is time.

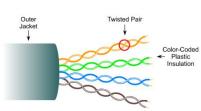

Parameter	Value
Bit Time	10 nsec
Slot Time	512 bit times
Interframe Spacing	96 bits
Collision Attempt Limit	16
Collision Backoff Limit	10
Collision Jam Size	32 bits
Maximum Untagged Frame Size	1518 octets
Minimum Frame Size	512 bits (64 octets)

Coaxial

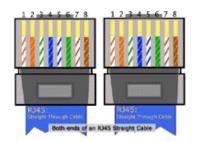

- Dipakai pada teknologiBus
- Sudah tidak dipakai lagi
- Ada dua tipe coaxial :
 - Thinnet → Max 185 M
 - □ 10Base2
 - Thicknet → Max 500 M
 - 10Base5
- Perlu repeater untuk jarak melebihi batas max kabel


Twisted Pair

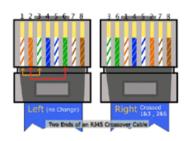
- Dipakai untuk teknologiStar
- Paling umum dipakai
- Type Twisted Pair
 - Shielded Twisted Pair (STP)
 - Screen Twisted Pair(ScTP
 - Unshield Twisted Pair(UTP)


STP

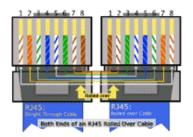
ScTP


Kabel UTP

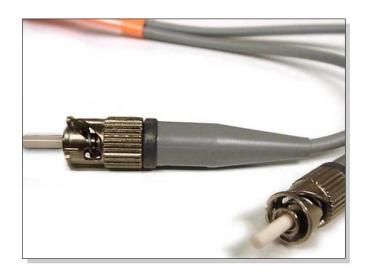
- 10 Mbps (10 Megabit per detik)
 - 10BaseT
- 100 Mbps
 - 100BaseTX
- 1000 Mbps
 - 1000BaseT

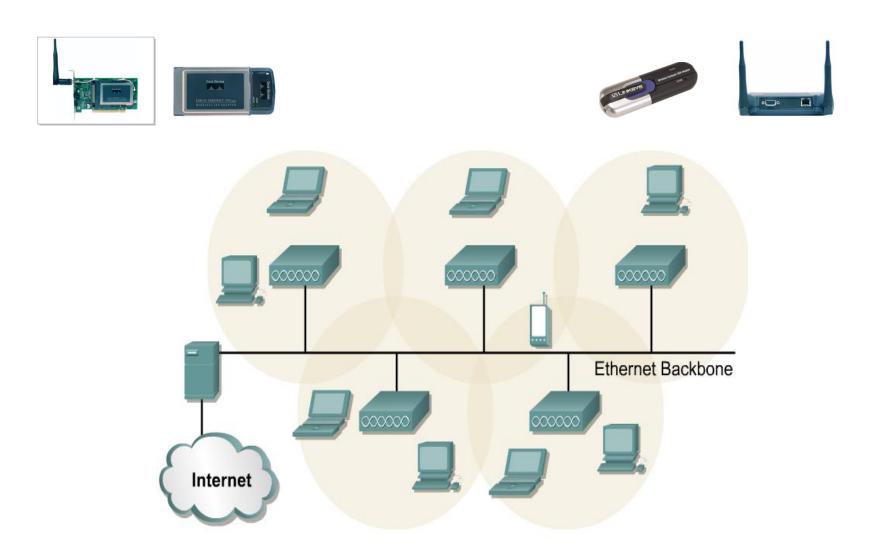

Type Kabel UTP

- Straight Trough, untuk koneksi :
 - Hub/Switch to PC/Router
- Cross Over, Untuk koneksi :
 - Router to Router, PC to PC, Hub/Switch to Hub/Switch
- Roll Over, Untuk koneksi :
 - PC to Router/Switch → console, manajemen switch/router

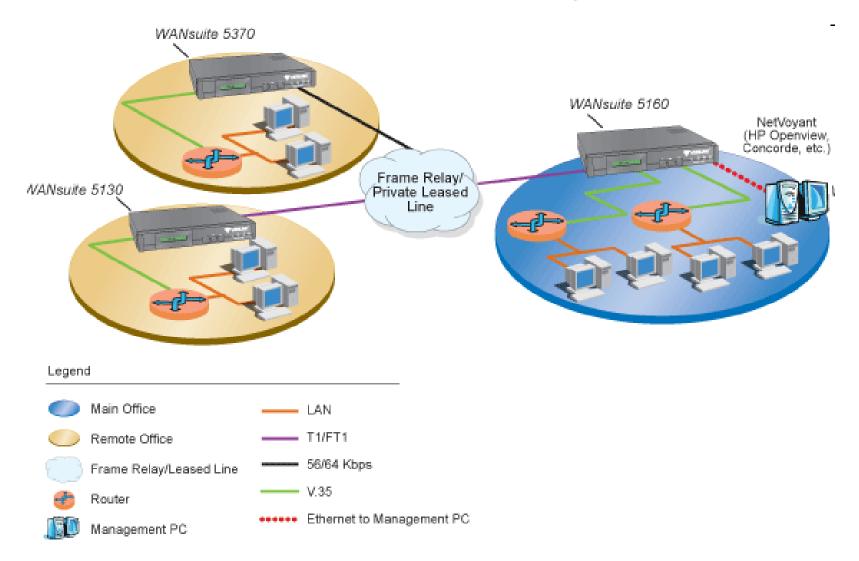

Straight-through

Cross-over


Rollover


Fiber Optic

- Menggunakan infra merah atau laser untuk mengirimkan data
- Terdiri dari dua kabel:
 - Transmit Data
 - Receive Data
- Menyediakan komunikasi full duplex

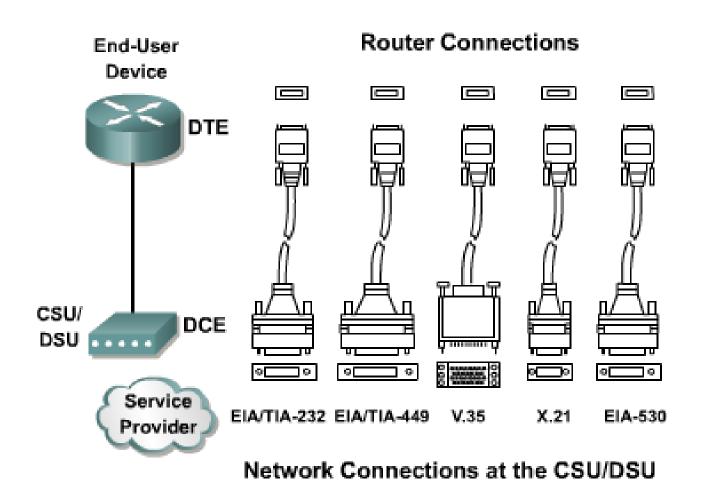

Wireless

Koneksi WAN

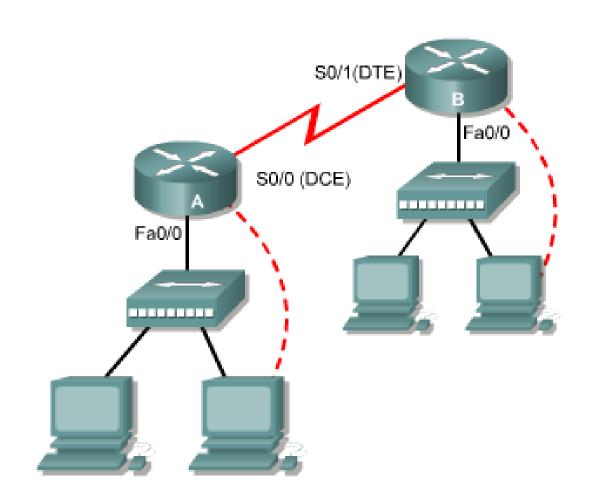
- WAN membutuhkan koneksi khusus untuk hubungan antar area yang berjauhan
- Biasa menggunakan koneksi serial untuk menghubungkan area yang berjauhan
- Pada Cisco router, dikenal dua tipe koneksi serial :
 - 60-pin connector.
 - 'smart serial' connector yang lebih kecil

Koneksi WAN Beberapa Area

Physical Layer WAN

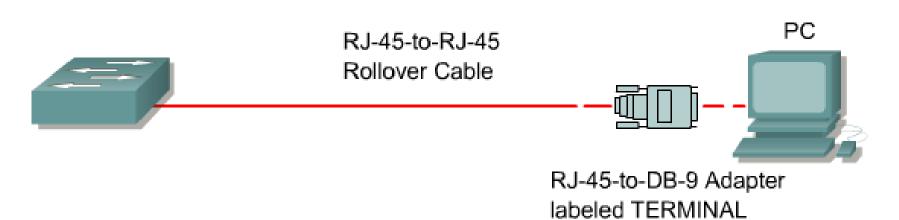

Cisco HDLC	ддд	Frame Relay	ISDN BRI	DSL Modem	Cable Modem
EIA/TIA-232 EIA/TIA-449 X.21 V.24 V.35 High Speed Serial Interface (HSSI)			RJ-45 Note: ISDN BRI cable pinouts are different than the pinouts for Ethernet	RJ-11 Note: Works over telephone line	F Note: Works over Cable TV line

- · Physical Layer implementation vary
- · Cable specifications define speed of link


Koneksi Serial dan Kecepatannya

Data (bps)	Distance (Meters) EIA/TIA-232	Distance (Meters) EIA/TIA-449
2400	60	1250
4800	30	625
6900	15	312
19,200	15	156
38,400	15	78
115,200	3.7	_
T1 (1.544 Mbps)	_	15

Koneksi Serial WAN



Koneksi WAN Dengan Router

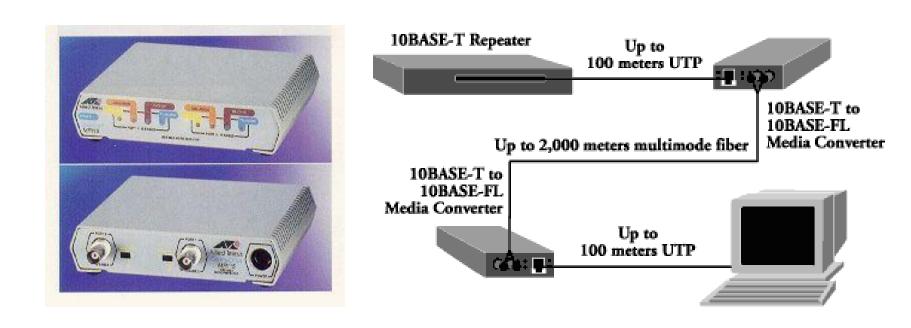
Physical Connection Untuk Konfigurasi Device

Device with Console

Physical Connection Untuk Konfigurasi Device

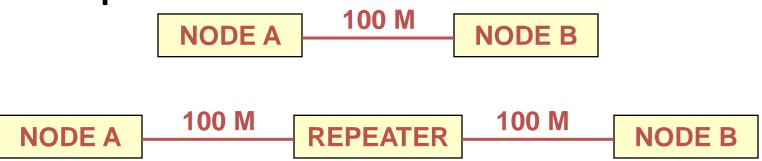
- Menggunakan tipe kabel roolover
 Pada device jaringan menggunakan port console dan pada komputer menggunakan port COM(1/2), shg Perlu konverter RJ45 to DB9
- Pada komputer Menggunakan COM dengan port settings: 9600 bps, 8 data bits, no parity, 1 stop bit, and no flow control.
 - Pada device bisa juga menggunakan port AUX untuk konfigurasi menggunakan modem
- Untuk AUX menggunankan 9600 bps, 8 data bits, no parity, 1 stop bit, and no flow control.

Peralatan Jaringan Layer 1


- Repeater
- Hub

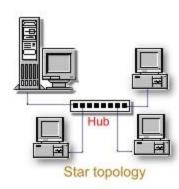
Repeaters

Medium	Max Distance
Twisted Pair	100 meters
Coaxial Cable	185/500 meters
Fiber Optic	2+ kilometers


- Sinyal selama travel mempunyai batas max. panjang sesuai media masingmasing sebelum menjadi lemah dan menjadi sampah
- Pelemahan biasa disebut dengan attenuation.
- Attenuation bertambah karena:
 - Bertambahnya panjang kabel
 - Bertambahnya node/titik/komputer yang terkoneksi ke jaringan

The Repeater

 Repeater berguna untuk menguatkan sinyal selama terjadi pelemahan sinyal


Repeaters Extend Distances

- Dengan menggunakan repeater jarak yang bisa ditempuh sinyal bisa ditambah
- Contoh: 10Base-T max. panjang yang diijinkan 100 meters. Satu repeater dapat memperpanjang jarak menjadi dua kali lipat menjadi 200 meters!
- Repeater hanya berfungsi menguatkan sinyal tidak lebih, tidak ada fungsi tambahan yang lebih smart

Hub

- Ketika mulai diperkenalkan teknologi star, dibutuhkan peralatan sebagai concentrator, maka diciptakan hub
- Hub merupakan mulitport repeater.
- Prinsip hub, data yang datang dari satu port akan dikeluarkan ke semua port kecuali port sumber.
- Dianggap sebagai device Layer 1 karena tidak ada fungsi smart yang lain kecuali sebagai concentrator

Pertanyaan:

- Sebutkan peralatan di layer fisik!
- 2. Sebutkan struktur dan fungsi dari frame ethernet!
- 3. Sebutkan jenis-jenis ethernet yang ada di pasaran!
- 4. Sebutkan fungsi dari hub!
- 5. Sebutkan jenis-jenis hub yang ada di pasaran!