# **Praktikum 6** Enhancement Citra (2) Histogram Equalisasi

# **POKOK BAHASAN :**

- ✓ Histogram
- ✓ Histogram Equalisasi

# **TUJUAN BELAJAR :**

Setelah melakukan praktikum pada bab ini, mahasiswa diharapkan mampu:

- ✓ Membuat program menampilkan histogram citra gray scale
- ✓ Membuat program menampilkan histogram citra setelah pengaturan brightness
- ✓ Membuat program menampilkan histogram citra setelah pengaturan contrass
- ✓ Membuat program enhancement citra dengan histogram equalisasi

# DASAR TEORI :

### **Histogram Equalization**

Histogram Equalization adalah suatu proses perataan histogram, dimana distribusi nilai derajat keabuan pada suatu citra dibuat rata. Untuk dapat melakukan histogram equalization ini diperlukan suatu fungsi distribusi kumulatif yang merupakan kumulatif dari histogram.

Misalkan diketahui data sebagai berikut:

243136431032

Maka histogram dari data di atas adalah:



Proses perhitungan distribusi kumulatif dapat dijelaskan dengan tabel berikut:

| Nilai | Histogram | Dsitribusi kumulatif |
|-------|-----------|----------------------|
| 0     | 1         | 1                    |
| 1     | 2         | 1+2=3                |
| 2     | 2         | 3+2=5                |
| 3     | 4         | 5+4=9                |
| 4     | 2         | 9+2=11               |
| 5     | 0         | 11+0=11              |
| 6     | 1         | 11+1=12              |

Dan diperoleh histogram kumulatif sebagai berikut:



Gambar 6.2 Histogram kumulatif

Histogram equalization (perataan histogram) adalah suatu proses dimana histogram diratakan berdasarkan suatu fungsi linier (garis lurus) seperti terlihat pada gambar 6.2. Teknik perataan histogram adalah sebagai berikut:

| Nilai asal | Histogram<br>Kumulatif | Nilai hasil                 |
|------------|------------------------|-----------------------------|
| 0          | 1                      | $\frac{1}{2} \rightarrow 0$ |
| 1          | 3                      | 3/2 → 1                     |
| 2          | 5                      | 5/2 → 2                     |
| 3          | 9                      | 9/2 → 4                     |
| 4          | 11                     | 11/2 → 5                    |
| 5          | 11                     | 11/2 → 5                    |
| 6          | 12                     | 12/2 → 6                    |

Nilai hasil histogram equalization adalah sebagai berikut:

$$w = \frac{c_w.th}{n_x n_y}$$

dimana

w = nilai keabuan hasil histogram equalization

 $c_w = histogram kumulatif dari w$ 

th = threshold derajat keabuan (256)

 $n_x dan n_y = ukuran gambar$ 

Hasil setelah histogram equalization adalah sebagai berikut:

 $2\ 5\ 4\ 1\ 4\ 6\ 5\ 4\ 1\ 0\ 4\ 2$ 

Histogram dari hasil histogram equalization:



Gambar 6.3 Histogram dari hasil histogram equalization

# **PERCOBAAN**:

1. Buatlah disain gui seperti gambar 6.4. (4 control picture untuk menampilkan citra asal, citra hasil perubahan brightness, citra hasil perubahan kontras, dan citra hasil histogram equalisasi, 4 control picture untuk menampilkan histogram citra asal, histogram citra hasil perubahan brightness, histogram citra hasil perubahan kontras, dan histogram citra hasil histogram equalisasi, 8 button : load citra, menampilkan histogram asal, proses brightness, histogram brightness, proses kontras, histogram kontras, proses equalisasi, histogram equalisasi, dan 1 buah edit box).



Gambar 6.4. Disain GUI

- 2. Rubah semua properti ID pada control picture dengan IDC\_pic1 s/d IDC\_pic8
- 3. Set member variabel control picture, button dan edit box seperti gambar 6.5.

| Control <u>I</u> Ds:      | Туре    | Member           |      |
|---------------------------|---------|------------------|------|
| IDC BUTTON1               | CButton | m loadqbr        | ~    |
| IDC_BUTTON2               | CButton | m_btnHAsal       |      |
| IDC_BUTTON3               | CButton | m_btnbrightness  |      |
| IDC_BUTTON4               | CButton | m_btnHBrightness |      |
| IDC BUTTON5               | CButton | m btnContras     |      |
| IDC_BUTTON6               | CButton | m_btnHContrass   |      |
| IDC_BUTTON7               | CButton | m_btnEqualisasi  | _    |
| IDC_BUTTON8               | CButton | m_btnHÉqualisasi |      |
| IDC_EDIT1                 | CEdit   | m_txtEdit1       |      |
| IDC_pic1                  | CStatic | m_pic1           | 2000 |
| IDC pic2                  | CStatic | m pic2           | ~    |
| IDC pic3                  | CStatic | m_pic3           |      |
| IDC pic4                  | CStatic | m_pic4           |      |
| IDC pic5                  | CStatic | m pic5           |      |
| IDC pic6                  | CStatic | m pic6           |      |
| IDC pic7                  | CStatic | m_pic7           |      |
| IDC pic8                  | CStatic | m pic8           | -    |
| 10002 <del>-5</del> 10000 |         | 60 TO 100 TO     | ~    |

Gambar 6.5. Member Variabel

- 4. Tambahkan pada header file xxxdlg.h: CBitmap m\_bmpBitmap;
- 5. Tambahkan prosedure pada file xxxdlg.cpp :

```
void WarnaToRGB(long int warna,int *Red, int *Green,
int *Blue)
{
    *Red = warna & 0x00000FF;
    *Green = (warna & 0x0000FF00) >> 8;
    *Blue = (warna & 0x00FF0000) >> 16;
}
long int RGBToWarna(int Red, int Green, int Blue)
{
    return(Red+(Green<<8)+(Blue<<16));
}</pre>
```

6. Siapkan gambar bmp pada directory project C "test2.bmp" :



7. Klik 2x button Load ketikkan program berikut pada :

```
void CxxxDlg::OnButton1()
{
    // TODO: Add your control notification handler
    //code here
    int i,j,red,green,blue,gray;
    long int warna,warnagray;
    CDC* pDC = m_picl.GetDC();
    CDC dcMem1;
    CRect rect;
    BITMAP bm;
```

```
HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
"test2.bmp", IMAGE BITMAP, 0, 0,
LR LOADFROMFILE LR CREATEDIBSECTION);
     if(hBitmap)
           if(m bmpBitmap.DeleteObject())
                 m_bmpBitmap.Detach();
           m_bmpBitmap.Attach(hBitmap);
     m pic1.GetClientRect(rect);
     m_bmpBitmap.GetBitmap(&bm);
     dcMem1.CreateCompatibleDC(pDC);
     dcMem1.SelectObject(&m_bmpBitmap);
     for(i=0;i<bm.bmHeight;i++)</pre>
     for(j=0;j<bm.bmWidth;j++)</pre>
           warna=dcMem1.GetPixel(j,i);
           WarnaToRGB(warna, &red, &green, &blue);
           gray=int(red+green+blue)/3;
           warnagray=RGBToWarna(gray,gray,gray);
           dcMem1.SetPixel(j,i,warnagray);
      }
     pDC-
>StretchBlt(0,0,rect.Width(),rect.Height(),&dcMem1,0,0
, bm.bmWidth, bm.bmHeight, SRCCOPY);
```

8. Klik 2x button brightness ketikkan program berikut pada :

```
void CxxxDlq::OnButton3()
{
     int i,j,red,green,blue,gray;
     long int warna, warnagray;
     CDC* pDC = m_pic3.GetDC();
     CDC dcMem1;
     CRect rect;
     BITMAP bm;
     HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
      "test2.bmp", IMAGE_BITMAP, 0, 0,
LR_LOADFROMFILE | LR_CREATEDIBSECTION );
     if(hBitmap)
     {
           if(m_bmpBitmap.DeleteObject())
                 m_bmpBitmap.Detach();
           m_bmpBitmap.Attach(hBitmap);
     }
```

```
m_pic3.GetClientRect(rect);
     m_bmpBitmap.GetBitmap(&bm);
     dcMem1.CreateCompatibleDC(pDC);
     dcMem1.SelectObject(&m_bmpBitmap);
     int k=GetDlgItemInt(IDC_EDIT1);
     for(i=0;i<bm.bmHeight;i++)</pre>
     for(j=0;j<bm.bmWidth;j++)</pre>
           warna=dcMem1.GetPixel(j,i);
           WarnaToRGB(warna, &red, &green, &blue);
           gray=int(red+green+blue)/3;
           gray=gray+k;
           if(gray>255)gray=255;
           if(gray<0)gray=0;
           warnagray=RGBToWarna(gray,gray,gray);
           dcMem1.SetPixel(j,i,warnagray);
     }
     pDC-
>StretchBlt(0,0,rect.Width(),rect.Height(),&dcMem1,0,0
,bm.bmWidth,bm.bmHeight,SRCCOPY);
}
```

- 9. Uji Coba dengan memasukkan nilai 20, 30, 60, -10, -20, -30 pada edit box kemudian amati perubahan hasilnya dibandingkan citra asal.
- 10. Klik 2x button kontras ketikkan program berikut pada :

```
void CPrakHistogram3ITADlg::OnButton5()
{
      int i,j,red,green,blue,gray;
      long int warna, warnagray;
      CDC* pDC = m_pic5.GetDC();
      CDC dcMem1;
      CRect rect;
      BITMAP bm;
     HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
      "test2.bmp", IMAGE_BITMAP, 0, 0,
     LR_LOADFROMFILE | LR_CREATEDIBSECTION );
      if(hBitmap)
      {
           if(m_bmpBitmap.DeleteObject())
                 m_bmpBitmap.Detach();
           m_bmpBitmap.Attach(hBitmap);
      }
```

```
m_pic5.GetClientRect(rect);
     m_bmpBitmap.GetBitmap(&bm);
     dcMem1.CreateCompatibleDC(pDC);
     dcMem1.SelectObject(&m bmpBitmap);
     int k=GetDlgItemInt(IDC_EDIT1);
     float fk=k/100.;
     for(i=0;i<bm.bmHeight;i++)</pre>
     for(j=0;j<bm.bmWidth;j++)</pre>
           warna=dcMem1.GetPixel(j,i);
           WarnaToRGB(warna,&red,&green,&blue);
           gray=int(red+green+blue)/3;
           gray=int(gray*fk);
           if(gray>255)gray=255;
           warnagray=RGBToWarna(gray,gray,gray);
           dcMem1.SetPixel(j,i,warnagray);
     }
     pDC-
>StretchBlt(0,0,rect.Width(),rect.Height(),&dcMem1,0,0
, bm.bmWidth, bm.bmHeight, SRCCOPY);
```

- 11. Uji Coba dengan memasukkan nilai 5, 20, 30, 50, 60, 80 pada edit box kemudian amati perubahan hasilnya dibandingkan citra asal.
- 12. Klik 2x button Histogram Asal ketikkan program berikut pada :

```
void CxxxDlg::OnButton2()
{
     CDC* pDC = m_pic1.GetDC();
     CDC dcMem1;
     CRect rect;
     BITMAP bm;
     char str[5];
     int i,j;
     int red,green,blue,gray;
     long int warna;
     float h[256];
     HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
      "test2.bmp", IMAGE_BITMAP, 0, 0,
     LR_LOADFROMFILE | LR_CREATEDIBSECTION);
     if(hBitmap)
      ł
           if(m_bmpBitmap.DeleteObject())
                 m_bmpBitmap.Detach();
           m_bmpBitmap.Attach(hBitmap);
      }
```

```
m pic1.GetClientRect(rect);
     m_bmpBitmap.GetBitmap(&bm);
     dcMem1.CreateCompatibleDC(pDC);
     dcMem1.SelectObject(&m bmpBitmap);
     for(i=0;i<256;i++)h[i]=0;</pre>
     for(i=0;i<bm.bmHeight;i++)</pre>
     for(j=0;j<bm.bmWidth;j++)</pre>
     {
           warna=dcMem1.GetPixel(j,i);
           WarnaToRGB(warna,&red,&green,&blue);
           gray=int(red+green+blue)/3;
           h[gray]++;
      }
     float hmax=h[0];
     for(i=1;i<256;i++)</pre>
     if(h[i]>hmax)hmax=h[i];
     for(i=0;i<256;i++)</pre>
           h[i]=int(120*(h[i]/hmax));
     /* menampilkan nilai histogram level 0-100
     for(i=0;i<100;i++)</pre>
     {sprintf(str,"%f",h[i]);
      pDC->TextOut(10,i*10,str); }*/
     CDC* pDC1 = m_pic2.GetDC();
     pDC1->MoveTo(0,120);//Koordinat 0,0
     pDC1->LineTo(400,120);//sb x
     pDC1 - MoveTo(0, 120 - (int)h[0]); //gray = 0
      pDC1->LineTo(0,120);//grs ke sb x
     for(i=1;i<256;i++)</pre>
     {
           pDC1->MoveTo(i*2,120-(int)h[i]);
           pDC1->LineTo(i*2,120);//grs ke sb x
     }
}
```

13. Klik 2x button Histogram Brightness ketikkan program berikut pada :

```
void CxxxDlg::OnButton4()
{
     CDC* pDC = m_pic3.GetDC();
     CDC dcMem1;
     CRect rect;
     BITMAP bm;
     char str[5];
     int i,j;
     int red,green,blue,gray;
     long int warna;
     float h[256];
     HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
         "test2.bmp",IMAGE_BITMAP, 0, 0,
LR_LOADFROMFILE|LR_CREATEDIBSECTION);
```

```
if(hBitmap)
      if(m bmpBitmap.DeleteObject())
{
            m_bmpBitmap.Detach();
      m_bmpBitmap.Attach(hBitmap);
m_pic3.GetClientRect(rect);
m_bmpBitmap.GetBitmap(&bm);
dcMem1.CreateCompatibleDC(pDC);
dcMem1.SelectObject(&m_bmpBitmap);
int k=GetDlqItemInt(IDC EDIT1);
for(i=0;i<256;i++)h[i]=0;</pre>
for(i=0;i<bm.bmHeight;i++)</pre>
for(j=0;j<bm.bmWidth;j++)</pre>
ł
      warna=dcMem1.GetPixel(j,i);
      WarnaToRGB(warna,&red,&green,&blue);
      gray=int(red+green+blue)/3;
      gray=gray+k;
      if(gray>255)gray=255;
      if(gray<0)gray=0;</pre>
      h[gray]++;
}
float hmax=h[0];
for(i=1;i<256;i++)</pre>
if(h[i]>hmax)hmax=h[i];
for(i=0;i<256;i++)</pre>
//* dikalikan konstanta jika jumlah hmax >>
h[i]=int(120*(h[i]/hmax)*5);
/*sprintf(str,"%f",hmax);
 pDC->TextOut(100,50,str);
for(i=100;i<256;i++)</pre>
{sprintf(str,"%f",h[i]);
 pDC->TextOut(10,(100-i)*10,str);}
*/
CDC* pDC1 = m_pic4.GetDC();
pDC1->MoveTo(0,120);//Koordinat 0,0
pDC1->LineTo(400,120);//sb x
pDC1->MoveTo(0,120-(int)h[0]);//gray = 0
pDC1->LineTo(0,120);//grs ke sb x
for(i=1;i<256;i++)</pre>
{
      pDC1->MoveTo(i*2,120-(int)h[i]);
      pDC1->LineTo(i*2,120);//grs ke sb x
}
```

}

14. Klik 2x button Histogram Kontras ketikkan program berikut pada :

```
void CxxxDlg::OnButton6()
ł
     CDC* pDC = m_pic5.GetDC();
     CDC dcMem1;
     CRect rect;
     BITMAP bm;
     char str[5];
     int i,j;
     int red,green,blue,gray;
     long int warna;
     float h[256];
HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
     "test2.bmp", IMAGE_BITMAP, 0, 0,
     LR_LOADFROMFILE | LR_CREATEDIBSECTION ) ;
     if(hBitmap)
     {
           if(m_bmpBitmap.DeleteObject())
                 m bmpBitmap.Detach();
           m_bmpBitmap.Attach(hBitmap);
     m pic5.GetClientRect(rect);
     m_bmpBitmap.GetBitmap(&bm);
     dcMem1.CreateCompatibleDC(pDC);
     dcMem1.SelectObject(&m_bmpBitmap);
     int k=GetDlgItemInt(IDC_EDIT1);
     float fk=k/100.;
     for(i=0;i<256;i++)h[i]=0;</pre>
     for(i=0;i<bm.bmHeight;i++)</pre>
     for(j=0;j<bm.bmWidth;j++)</pre>
     {
           warna=dcMem1.GetPixel(j,i);
           WarnaToRGB(warna,&red,&green,&blue);
           gray=int(red+green+blue)/3;
           gray=int(gray*fk);
           if(gray>255)gray=255;
           if(gray<0)gray=0;
           h[gray]++;
      }
     float hmax=h[0];
     for(i=1;i<256;i++)</pre>
     if(h[i]>hmax)hmax=h[i];
     //* dikalikan konstanta jika jumlah hmax >>
     for(i=0;i<256;i++)
           h[i]=int(120*(h[i]/hmax)*15);
     sprintf(str,"%f",hmax);
     pDC->TextOut(100,50,str);
     /*for(i=100;i<256;i++)</pre>
     {sprintf(str,"%f",h[i]);
      pDC->TextOut(10,(100-i)*10,str);}*/
```



15. Klik 2x button Equalisasi ketikkan program berikut :

```
void CxxxDlg::OnButton7()
{
      CDC* pDC = m_pic7.GetDC();
     CDC dcMem1;
     CRect rect;
     BITMAP bm;
      int i,j;
      int red,green,blue,gray;
      long int warna;
      float h[256];
     HBITMAP
hBitmap=(HBITMAP)::LoadImage(AfxGetInstanceHandle(),
      "test2.bmp", IMAGE_BITMAP, 0, 0,
LR_LOADFROMFILE | LR_CREATEDIBSECTION ) ;
      if(hBitmap)
      ł
           if(m_bmpBitmap.DeleteObject())
                 m bmpBitmap.Detach();
           m_bmpBitmap.Attach(hBitmap);
     m pic7.GetClientRect(rect);
     m_bmpBitmap.GetBitmap(&bm);
     dcMem1.CreateCompatibleDC(pDC);
     dcMem1.SelectObject(&m_bmpBitmap);
     for(i=0;i<256;i++)</pre>
     h[i]=0;
      for(i=0;i<bm.bmHeight;i++)</pre>
      for(j=0;j<bm.bmWidth;j++)</pre>
      {
     warna=dcMem1.GetPixel(j,i);
     WarnaToRGB(warna, &red, &green, &blue);
      gray=int(red+green+blue)/3;
     h[qray]++;}
      float c[256];
      c[0]=h[0];
```

```
for(i=1;i<256;i++)</pre>
     c[i]=c[i-1]+h[i];
     for(i=0;i<256;i++)
     c[i]=c[i]/bm.bmHeight/bm.bmWidth;
     for(i=0;i<256;i++)h[i]=0;</pre>
     for(i=0;i<bm.bmHeight;i++)</pre>
     for(j=0;j<bm.bmWidth;j++)</pre>
      {warna=dcMem1.GetPixel(j,i);
     WarnaToRGB(warna, &red, &green, &blue);
     gray=int(red+green+blue)/3;
     gray=c[gray]*255;
     h[gray]++;
     warna=RGBToWarna(gray,gray,gray);
     dcMem1.SetPixel(j,i,warna);}
     pDC-
>StretchBlt(0,0,rect.Width(),rect.Height(),&dcMem1,0,0,bm.bmWid
th, bm. bmHeight, SRCCOPY);
```

16. Klik 2x button Histogram Equalisasi ketikkan program berikut pada :

```
void CxxxDlg::OnButton8()
{
     CDC* pDC = m_pic7.GetDC();
           CDC dcMem1;
           CRect rect;
           BITMAP bm;
           char str[5];
           int i,j;
           int red,green,blue,gray;
           long int warna;
           float h[256];
           m_pic7.GetClientRect(rect);
           m_bmpBitmap.GetBitmap(&bm);
           dcMem1.CreateCompatibleDC(pDC);
           dcMem1.SelectObject(&m_bmpBitmap);
           for(i=0;i<256;i++)h[i]=0;</pre>
           for(i=0;i<bm.bmHeight;i++)</pre>
           for(j=0;j<bm.bmWidth;j++)</pre>
            {
                 warna=dcMem1.GetPixel(j,i);
                 WarnaToRGB(warna, &red, &green, &blue);
                 gray=int(red+green+blue)/3;
                 if(gray>255)gray=255;
                 if(gray<0)gray=0;
                 h[gray]++;
            }
```

```
float hmax=h[0];
     for(i=1;i<256;i++)</pre>
     if(h[i]>hmax)hmax=h[i];
     for(i=0;i<256;i++)</pre>
//* dikalikan konstanta jika jumlah hmax >>
           h[i]=int(120*(h[i]/hmax));
/*sprintf(str,"%f",hmax);
      pDC->TextOut(100,50,str);
for(i=100;i<256;i++)
{sprintf(str,"%f",h[i]);
      pDC->TextOut(10,(100-i)*10,str);}*/
     CDC* pDC1 = m_pic8.GetDC();
     pDC1->MoveTo(0,120);//Koordinat 0,0
     pDC1->LineTo(400,120);//sb x
     pDC1->MoveTo(0,120-(int)h[0]);//gray = 0
    pDC1->LineTo(0,120);//grs ke sb x
for(i=1;i<256;i++)</pre>
{
           pDC1->MoveTo(i*2,120-(int)h[i]);
           pDC1->LineTo(i*2,120);//grs ke sb x
      }
}
```

### LAPORAN RESMI :

- 1. Amati hasil citra dan histogram perubahan brightness
- 2. Capture citra hasil dan histogram brightness
- 3. Buat kesimpulan berdasarkan hasil citra dan histogram perubahan brightnessnya
- 4. Amati hasil citra dan histogram perubahan kontras
- 5. Capture citra hasil dan histogram kontras
- 6. Buat kesimpulan berdasarkan hasil citra dan histogram perubahan kontrasnya
- 7. Amati hasil citra dan histogram setelah equalisasi
- 8. Capture citra hasil dan histogram equalisasi
- 9. Buat kesimpulan berdasarkan hasil citra dan histogram equalisasi